Benchmarking Default Prediction Models: Pitfalls and Remedies in Model Validation

نویسنده

  • Roger M. Stein
چکیده

We discuss the components of validating credit default models with a focus on potential challenges to making inferences from validation under real-world conditions. We structure the discussion in terms of: (a) the quantities of interest that may be measured (calibration and power) and how they can result in misleading conclusions if not taken in context; (b) a methodology for measuring these quantities that is robust to non-stationarity both in terms of historical time periods and in terms of sample firm composition; and (c) techniques that aid in the interpretation of the results of such tests. The approaches we advocate provide means for controlling for and understanding sample selection and variability. These effects can in some cases be severe and we present some empirical examples that highlight instances where they are and can thus compromise conclusions drawn from validation tests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Prediction Power of Artificial Neural Networks Compound Models in Predicting Credit Default Swap Prices through Black–Scholes–Merton Model

Default risk is one of the most important types of risks, and credit default swap (CDS) is one of the most effective financial instruments to cover such risks. The lack of these instruments may reduce investment attraction, particularly for international investors, and impose potential losses on the economy of the countries lacking such financial instruments, among them, Iran. After the 2007 fi...

متن کامل

Finding Default Barrier and Optimal Cutoff Rate in KMV Structural Model based on the best Ranking of Companies

According to the adverse consequences that are brought by financial distress for companies, economy and financial –monetary institutions, the use of methods that can predict the occurrence of financial failure and prevent the loss of wealth is of great importance. The major models of credit risk assessment are based on retrospective information and using the methods which use the updated market...

متن کامل

Benchmarking regression algorithms for loss given default modeling

The introduction of the Basel II Accord has had a huge impact on financial institutions, allowing them to build credit risk models for three key risk parameters: PD (probability of default), LGD (loss given default) and EAD (exposure at default). Until recently, credit risk research has focused largely on the estimation and validation of the PD parameter, and much less on LGD modeling. In this ...

متن کامل

Investigating the missing data effect on credit scoring rule based models: The case of an Iranian bank

Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...

متن کامل

Pavement performance prediction model development for Tehran

Highways and in particular their pavements are the fundamental components of the road network. They require continuous maintenance since they deteriorate due to changing traffic and environmental conditions. Monitoring methods and efficient pavement management systems are needed for optimizing maintenance operations. Pavement performance prediction models are useful tools for determining the op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002